If Cos o + sin o = √2
Prove that Cos 0 - sino = √2 sin o
Answers
Answered by
4
Answer:
Step-by-step explanation:
i will be using A instead of o
we have ,
cosA - sinA=√2 sinA
squaring both the sides
=>(cosA - sinA)²=2 sin²A
=>cos²A+sin²A-2sinAcosA=2sin²A
=>sin²A-2sin²A-2sinAcosA= -cos²A
=> -sin²A-2sinAcosA= -cos²A
=> sin²A+2sinAcosA=cos²A
adding cos²A on both the sides
=> cos²A+sin²A+2sinAcosA=2cos²A
=> (cosA+sinA)²=2cos²A
=> cosA+sinA=√2cosA
Answered by
3
Answer:
Step-by-step explanation:
cos0 + sin0 = (given)
= 2 (squaring both sides)
+ + 2cos0.sin0 = 2 ( + = 1)
1 + 2cos0.sin0 = 2
2cos0.sin0=2 - 1
cos0.sin0 = 1÷2
sin0 = 1/2cos0-------------{1}
Else, you can solve.
Similar questions