if cos(pi/4 -x)cos2x + sinx sin2x secx = cos sin2x secx + cos(pi/4 + x)cos2x then possible value of cos^2x + sec^2x is
Answers
Step-by-step explanation:
cos(pi/4 -x)cos2x + sinx sin2x secx = cos sin2x secx + cos(pi/4 + x)cos2x
cos(pi/4 -x) = cospi/4cosx + sinpi/4sinx
= 1/root2 cosx + 1/root2 sinx
= 1/root2 (cosx + sinx)
sinx sin2x secx = sinx 2sinxcosx (1/ cosx)
=2(sinx)^2
cosxsin2x secx = cosx sin2x (1/cosx) = sin2x
cos(pi/4 + x) = cospi/4cosx - sinpi/4sinx
= 1/root2 cosx - 1/root2 sinx
= 1/root2 (cosx - sinx)
cos(pi/4 -x)cos2x + sinx sin2x secx = cos sin2x secx + cos(pi/4 + x)cos2x
1/root2 (cosx + sinx) cos2x+ 2(sinx)^2 = sin2x + 1/root2 (cosx - sinx)cos2x
1/root2 (cosx + sinx -cosx + sinx)cos2x=2sinxcosx - 2(sinx)^2
1/root2(2sinx)cos2x= 2sinx(cosx-sinx)
cos2x/(cosx-sinx) = root2
(cos^2x-sin^2x)/(cosx-sinx) = root2
(cosx-sinx)(cosx+sinx)/cosx-sinx) = root2
cosx+sinx= root2
cosx+sinx=root2
(cosx+sinx)^2=(root2)^2
cos^2x+sin^2x+2sinxcosx=2
1+sin2x=2
sin2x=2-1
sin2x=1
sin90=1
2x=90
x=45
cosx=cos45 =1/root2
secx=sec45=root2
cos^2x+sec^2x = (1/root2)^2+(root2)^2
=1/2+2
=5/2