Math, asked by guptamonica444, 8 months ago

If cosθ+secθ=√2,find the value of cos²θ+sec²θ​

Answers

Answered by MaheswariS
15

\underline{\textsf{Given:}}

\mathsf{cos\theta+sec\theta=\sqrt{2}}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{cos^2\theta+sec^2\theta}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{cos\theta+sec\theta=\sqrt{2}}

\textsf{Squaring on bothsides, we get}

\mathsf{(cos\theta+sec\theta)^2=(\sqrt{2})^2}

\textsf{Using the identity,}

\boxed{\mathsf{(a+b)^2=a^2+b^2+2ab}}

\mathsf{cos^2\theta+sec^2\theta+2\;cos\theta\;sec\theta=2}

\mathsf{cos^2\theta+sec^2\theta+2\;cos\theta(\dfrac{1}{cos\theta})=2}

\mathsf{cos^2\theta+sec^2\theta+2=2}

\mathsf{cos^2\theta+sec^2\theta=2-2}

\implies\boxed{\mathsf{cos^2\theta+sec^2\theta=0}}

Answered by pulakmath007
53

SOLUTION

GIVEN

 \sf{  \cos \theta +  \sec \theta =  \sqrt{2} \: }

TO DETERMINE

 \sf{  {\cos}^{2}  \theta + { \sec}^{2}  \theta  \: }

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf{ {a}^{2}   +  {b}^{2}  =  {(a + b)}^{2}  - 2ab\: }

EVALUATION

 \sf{  {\cos}^{2}  \theta + { \sec}^{2}  \theta  \: }

 =  \sf{ {  ( \cos \theta +  \sec \theta \:) }^{2}  -  2 \times \cos \theta \times   \sec \theta }

 \displaystyle =  \sf{ {  ( \cos \theta +  \sec \theta \:) }^{2}  -  2 \times \cos \theta \times   \frac{1}{\cos \theta}  }

 \displaystyle =  \sf{ {  ( \cos \theta +  \sec \theta \:) }^{2}  -  2   }

 \sf{ =  {( \sqrt{2} )}^{2}   - 2\: }

 = 2 - 2

 = 0

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 3x=cosecθ and 3/x=cotθ,

then find the value of 3(x²-1/x²)

https://brainly.in/question/21134289

Similar questions