If cos + sin = 2 cos, prove that cos - sin = +2 sin
Answers
Answer:
Given
cos θ + sin θ = √2cos θ
Squaring both side, we get
(cos θ + sin θ)2 = 2cos2θ
cos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θ
sin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θ
sin2θ + 2 × cosθ × sinθ = cos2θ
cos2θ – 2 × cosθ × sinθ = sin2θ
Now adding sin2θ both side, we get
cos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θ
(cos θ – sin θ)2 = 2sin2θ
cos θ – sin θ = √2sinθ
∴ cos θ – sin θ = √2sinθ
Answer:
√2sin∅
Step-by-step explanation:
Given
cos θ + sin θ = √2cos θ
Squaring both side, we get
(cos θ + sin θ)2 = 2cos2θ
cos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θ
sin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θ
sin2θ + 2 × cosθ × sinθ = cos2θ
cos2θ – 2 × cosθ × sinθ = sin2θ
Now adding sin2θ both side, we get
cos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θ
(cos θ – sin θ)2 = 2sin2θ
cos θ – sin θ = √2sinθ
∴ cos θ – sin θ = √2sinθ