Math, asked by needswetha, 1 year ago

If cosθ + sin θ = √2 cosθ, prove that cosθ - sinθ =√2 sinθ.

Answers

Answered by MaheswariS
8

\textbf{Given:}

cos\theta+sin\theta=\sqrt{2}\,cos\theta

\text{Squaring on both sides, we get}

(cos\theta+sin\theta)^2=2\,cos^2\theta

\text{using}

\boxed{\bf(a+b)^2=a^2+b^2+2ab}

cos^2\theta+sin^2\theta+2\,sin\theta\,cos\theta=2(1-\,sin^2\theta)

1+2\,sin\theta\,cos\theta=2-2\,sin^2\theta

\text{Rearranging terms we get}

2\,sin^2\theta+2\,sin\theta\,cos\theta=2-1

2\,sin^2\theta=1-2\,sin\theta\,cos\theta

2\,sin^2\theta=cos^2\theta+sin^2\theta-2\,sin\theta\,cos\theta

\text{using}

\boxed{\bf(a-b)^2=a^2+b^2-2ab}

2\,sin^2\theta=(cos\theta-sin\theta)^2

\text{Taking square root on both sides, we get}

\sqrt{2}\,sin\theta=cos\theta-sin\theta

\implies\boxed{\bf\,cos\theta-sin\theta=\sqrt{2}\,sin\theta}

Similar questions