If cos θ+ sin θ=√2 cos θ, show that cos θ-sin θ=√2 sin θ
Answers
Answered by
2
Let theta be A.
Given : cos A + sin A = root 2 cos A
Squaring on both sides,
(cos A + sin A)^2 = (root 2 cos A)^2
cos^2 A + 2 cos A sin A + sin^2 A = 2 cos^2 A
cos^2 A - 2 cos^2 A + 2 cos A sin A = -sin^2 A
-cos^2 A + 2 cos A sin A = -sin^2 A
cos^2 A - 2 cos A sin A =sin^2 A
Add sin^2 A on both sides
cos^2 A - 2 cos A sin A + sin^2 A = 2 sin^2 A
(cos A - sin A)^2 = 2 sin^2 A
cos A - sin A = root 2 sin A
Hope this helps......
Answered by
0
●here is your answer●
●hope it helps●
●hope it helps●
Attachments:
Similar questions
Math,
7 months ago
Math,
7 months ago
Physics,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago