if cos θ + sin θ = √2 cos θ, then the value of Cos θ - Sin θ=
Answers
Answered by
2
Answer:
Let θ = x
cos x + sin x = √2 cos x
squaring on both side, we get......
cos2x + sin2x + 2cosxsinx = 2cos2x
2sinxcosx = 2cos2x - cos2x - sin2x
2sinxcosx = cos2x - sin2x
2sinxcosx = (cosx+sinx) (cosx - sinx)
2sinxcosx = (root2 cosx) (cosx - sinx)
2sinxcosx/root2 cosx = cosx - sinx
√2 sinx = cosx - sinx
Answered by
3
Given:-
To find:-
Answer:-
Given that,
Squaring both sides, we get,
- Using (a + b)² = a² + b² + 2ab in L.H.S.,
- Using a² - b² = (a + b)(a - b) in R.H.S.,
- As it is given that cos(θ) + sin(θ) = √2 sin(θ),
Hence the answer is,
Similar questions