Math, asked by somanathjadhav694, 3 months ago

if cos θ + sin θ = √2 cos θ, then the value of Cos θ - Sin θ=

Answers

Answered by Anonymous
2

Answer:

Let θ = x

cos x + sin x = √2 cos x

squaring on both side, we get......

cos2x + sin2x + 2cosxsinx = 2cos2x

2sinxcosx = 2cos2x - cos2x - sin2x

2sinxcosx = cos2x - sin2x

2sinxcosx = (cosx+sinx) (cosx - sinx)

2sinxcosx = (root2 cosx) (cosx - sinx)

2sinxcosx/root2 cosx = cosx - sinx

√2 sinx = cosx - sinx

Answered by Arceus02
3

Given:-

  •   \sf \: cos( \theta)  + sin( \theta) =   \: \sqrt{2} cos( \theta)

To find:-

  •  \sf \: cos( \theta)  - sin( \theta)

Answer:-

Given that,

 \sf \: cos( \theta) + sin( \theta) =  \sqrt{2} cos( \theta)

Squaring both sides, we get,

 \longrightarrow \:   \sf \: \Big \{cos( \theta) + sin( \theta) \Big \}^{2}  =  \Big \{ \sqrt{2} cos( \theta)  \Big \} ^{2}

  • Using (a + b)² = a² + b² + 2ab in L.H.S.,

  \longrightarrow  \sf \:  {cos}^{2} ( \theta) +  {sin}^{2} ( \theta) + 2sin( \theta)cos( \theta) = 2 {cos}^{2} ( \theta)

   \longrightarrow \sf 2sin( \theta)cos( \theta) = 2 {cos}^{2} ( \theta) -  {cos}^{2} ( \theta) - {sin}^{2} ( \theta)

 \longrightarrow \sf 2sin( \theta)cos( \theta) =  {cos}^{2} ( \theta) -  {sin}^{2} ( \theta)

  • Using a² - b² = (a + b)(a - b) in R.H.S.,

  \longrightarrow \sf 2sin( \theta)cos( \theta) = \Big \{ cos( \theta) - sin( \theta)\Big\}   \Big\{cos( \theta) + sin( \theta)\Big\}

  • As it is given that cos(θ) + sin(θ) = √2 sin(θ),

   \longrightarrow \sf 2sin( \theta)cos( \theta) = \Big\{cos( \theta) - sin( \theta)\Big\} \Big\{ ( \sqrt{2} cos( \theta)\Big\}

 \longrightarrow \sf cos( \theta) - sin( \theta) =  \dfrac{2sin( \theta)cos( \theta)}{ \sqrt{2}cos( \theta) }

 \longrightarrow \sf cos( \theta) - sin( \theta) =  \dfrac{ { \cancel{2}}^ {{ }^{ \sqrt{2} }} sin( \theta) \cancel{cos( \theta)}}{  \cancel{ \sqrt{2}} \cancel{cos( \theta)} }

 \longrightarrow \sf cos( \theta) \ - sin( \theta) =  \sqrt{2} sin( \theta)

\\

Hence the answer is,

\longrightarrow \underline{\underline{\sf{\green{ cos(\theta) - sin(\theta) = \sqrt{2} sin(\theta) }}}}

Similar questions