If cosθ + sinθ = √2 sin ( 90 - θ ) , show that (sinθ - cosθ) = √2 cosθ
Answers
Answered by
1
Cosθ + Sinθ = √2 [Sin(θ)]*(The Question Might be Mistaken)
⇒Cosθ + Sinθ = √2Sinθ
⇒Cosθ=(√2-1)Sinθ
⇒(√2+1)Cosθ = (√2-1)(√2+1)Sinθ
⇒√2Cosθ + Cosθ = [(√2)² - 1²] Sinθ
⇒√2Cosθ =Sinθ - Cosθ
⇒Sinθ - Cosθ = √2Cosθ
The Given Question Might Be Typed Wrongly.. So please check it once again.
⇒Cosθ + Sinθ = √2Sinθ
⇒Cosθ=(√2-1)Sinθ
⇒(√2+1)Cosθ = (√2-1)(√2+1)Sinθ
⇒√2Cosθ + Cosθ = [(√2)² - 1²] Sinθ
⇒√2Cosθ =Sinθ - Cosθ
⇒Sinθ - Cosθ = √2Cosθ
The Given Question Might Be Typed Wrongly.. So please check it once again.
Similar questions