if cos ∅ - sin ∅ = √2 sin ∅, prove that cos ∅ + sin ∅
= √2 cos∅ prove
Answers
Answered by
19
Hola there,
Let ∅ be 'A'
Given=> cosA - sinA = √2 sinA
To prove => cosA + sinA = √2 cosA
Proof =>
(cosA - sinA)² = (√2 sinA)²
=> cos²A + sin²A - 2sinAcosA = 2sin²A
=> 2sin²A - sin²A - cos²A = 2sinAcosA
=> cos²A = sin²A + 2sinAcosA
Adding cos²A both sides, we get
=> 2cos²A = sin²A + 2sinAcosA + cos²A
=> 2cos²A = (cosA + sinA)²
=> cosA + sinA = √2 cosA
Hence Proved
Hope this helps...:)
Let ∅ be 'A'
Given=> cosA - sinA = √2 sinA
To prove => cosA + sinA = √2 cosA
Proof =>
(cosA - sinA)² = (√2 sinA)²
=> cos²A + sin²A - 2sinAcosA = 2sin²A
=> 2sin²A - sin²A - cos²A = 2sinAcosA
=> cos²A = sin²A + 2sinAcosA
Adding cos²A both sides, we get
=> 2cos²A = sin²A + 2sinAcosA + cos²A
=> 2cos²A = (cosA + sinA)²
=> cosA + sinA = √2 cosA
Hence Proved
Hope this helps...:)
Yuichiro13:
=_=
Answered by
10
Hey,
Rationalize the denominator to get :
Bring cos to other side to get :
Rationalize the denominator to get :
Bring cos to other side to get :
Similar questions