Math, asked by Prithviraj08, 12 hours ago

if cosθ+sinθ=√2,then cosθ-sinθ=

pls tell the answer fast I will mark u as brainliest​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ cos \: x - sin \: x \\  \\ given \: that \\ cos \: x + sin \: x =  \sqrt{2}  \\ cos \: x =  \sqrt{2}  - sin \: x \:  \:  \:  \:  \: (1) \\  \\ we \: know \: that \\ sin {}^{2}  + cos {}^{2} x = 1 \\ sin {}^{2}  \: x + ( \sqrt{2}  - sin \: x) {}^{2}  = 1 \\  \\  sin {}^{2}  \: x + sin {}^{2}  \: x + 2 - 2 \sqrt{2} .sin \: x = 1 \\  \\ 2.sin {}^{2}  \: x -  \sqrt{2} .sin \: x + 1 = 0 \\  \\ 2.sin {}^{2}  \: x -  \sqrt{2} .sin \: x -  \sqrt{2} .sin \: x + 1 = 0 \\  \\  \sqrt{2} .sin \: x( \sqrt{2} .sin \: x - 1) - 1( \sqrt{2} .sin \: x - 1) = 0 \\  \\ ( \sqrt{2} .sin \: x - 1)( \sqrt{2} .sin \: x - 1) = 0 \\  \\  \sqrt{2} .sin \: x - 1 = 0 \\  \\ sin \: x =  \frac{1}{ \sqrt{2} }

thus \: then \: we \: know \: that \\ si n \: 45 =  \frac{1}{ \sqrt{2} }  \\  \\ thus \: then \: accordingly \\ cos \: 45 =  \frac{1}{ \sqrt{2} }  \\  \\ so \: hence \\ cos \: x - sin \: x =  \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} }  \\  \\ cos \: x - sin \: x = 0

Similar questions