If cosƟ + sinƟ = √2cosƟ, prove that cosƟ – sinƟ =√2 sinƟ
Answers
Answer:
hopefully this will help you
Given :-
- cosθ + sinθ = √2 cosθ ...eqn(1)
To prove :-
- cos θ - sinθ = √2 sinθ
Proof :-
Given that
⇨ cosθ + sinθ = √2 cosθ
squaring both sides
⇨ (cosθ + sinθ)² = (√2 cosθ)²
Using identity
(a+b)² = a² + b² + 2 ab in LHS
⇨ cos²θ + sin²θ + 2sinθcosθ = 2cos²θ
⇨ 2sinθcosθ = 2cos²θ - cos²θ - sin²θ
⇨ 2sinθcosθ = cos²θ - sin²θ
Using identity
a² - b² = (a+b) (a-b) in RHS
⇨ 2sinθcosθ = (cosθ + sinθ)(cosθ - sinθ)
Using eqn(1) cosθ + sinθ = √2 cosθ
⇨ 2sinθcosθ = (√2 cosθ) (cosθ - sinθ)
⇨ cosθ - sinθ = (2sinθcosθ)/(√2 cosθ)
⇨ cosθ - sinθ = √2 sinθ
Proved .
▶ Know some trigonometric identites & Ratios
→ sin²A + cos²A = 1
→ 1 + tan²A = sec²A
→ 1 + cot²A = cosec²A
→ sin(90 - A) = cos A
→ cos (90 - A) = sin A
→ cosec(90 - A) = sec A
→ sec(90-A) = cosec A
→ tan(90 - A) = cot A
→ cot (90 - A) = tan A
→ cosec A = 1 \ sin A
→ sec A = 1 \ cos A
→ tan A = sin A / cos A
→ cot A = cos A / sin A