Math, asked by SmilieMahajan, 1 year ago

if cos + sin = √2cos prove that cos - sin =√2 sin

Answers

Answered by SmilyJamatia
230
hope this will help...
Attachments:

SmilieMahajan: tnq smily for helping smilie
SmilyJamatia: u r welcomee.......as we have the same name...
SmilieMahajan: yup
SmilyJamatia: hmm...
Answered by talasilavijaya
1

Answer:

cos \theta -sin\theta =\sqrt{2}sin \theta is proved

Step-by-step explanation:

Given  cos\theta + sin\theta =\sqrt{2} cos\theta

Squaring on both sides,  

\implies (cos\theta + sin\theta)^{2}  =(\sqrt{2} cos\theta)^{2}

Expanding the square

\implies cos^{2} \theta + sin^{2} \theta+2cos\theta sin\theta  ={2} cos^{2} \theta

\implies (1-2)cos^{2} \theta+ sin^{2} \theta+2cos\theta sin\theta  =0

\implies - cos^{2} \theta+ sin^{2} \theta+2cos\theta sin\theta  =0

\implies  cos^{2} \theta- sin^{2} \theta+2cos\theta sin\theta  =0

Adding {2sin^{2} \theta} on both sides,

\implies - cos^{2} \theta+ sin^{2} \theta+2cos\theta sin\theta+{2sin^{2} \theta}    ={2sin^{2} \theta}

\implies (cos \theta -sin\theta)^{2}}  ={2sin^{2} \theta}

Taking on root both sides

\implies \sqrt{(cos \theta -sin\theta)^{2}}  =\sqrt{2sin^{2} \theta}

\implies cos \theta -sin\theta =\sqrt{2}sin \theta

Hence proved

Similar questions