If cosθ+sinθ=√2cosθ then prove that cosθ−sinθ=√2sin
Answers
Answered by
0
i hope this will help you
Attachments:
Answered by
0
(cosx+sinx)^2=2 (cosx)^2 cosx or,(cosx)^2+(sinx)^2+2cosxsinx=2 (cosx)^2 or,2cosxsinx =(cosx)^2-(sinx)^2=(cosx+sinx)(cosx-sinx) or, cosx- sinx=2cosxsinx ÷(cosx +sinx )=2cosxsinx ÷root2 cosx=root2 sinx (proved)
Similar questions