if cosФ+sinФ=√2cosФ , then prove that cosФ-sinФ=√2sinФ
Answers
Answered by
1
(cosФ+sinФ)²=(√2cosФ)²cos²Ф+sin²Ф+2sinФcosФ=2cos²Ф
2cos²Ф -cos²Ф-sin²Ф=2sinФcosФ
cos²Ф-sin²Ф=2sinФcosФ
(cosФ+sinФ)(cosФ-sinФ)=2sinФcosФ
(cosФ-sinФ)=2sinФcosФ/√2cosФ (since cosФ+ sinФ=√2cosФ)
cosФ-sinФ=√2sinФ
2cos²Ф -cos²Ф-sin²Ф=2sinФcosФ
cos²Ф-sin²Ф=2sinФcosФ
(cosФ+sinФ)(cosФ-sinФ)=2sinФcosФ
(cosФ-sinФ)=2sinФcosФ/√2cosФ (since cosФ+ sinФ=√2cosФ)
cosФ-sinФ=√2sinФ
Answered by
3
sinФ+cosФ=√2cosФ
sinФ=√2cosФ-cosФ
=cosФ(√2-1)
multipying by (√2+1)on both sides
sinФ(√2+1)=cosФ(√2-1)(√2+1)
√2sinФ+sinФ=cosФ(2-1)
cosФ-sinФ=√2sinФ
sinФ=√2cosФ-cosФ
=cosФ(√2-1)
multipying by (√2+1)on both sides
sinФ(√2+1)=cosФ(√2-1)(√2+1)
√2sinФ+sinФ=cosФ(2-1)
cosФ-sinФ=√2sinФ
Similar questions
Math,
8 months ago
Geography,
8 months ago
Computer Science,
8 months ago
English,
1 year ago
Computer Science,
1 year ago
Computer Science,
1 year ago
English,
1 year ago
Math,
1 year ago