If (cosθ–sinθ)/(cosθ+sinθ) = (1–√3)/(1+√3), then find the value of θ.
Answers
Answered by
8
Answer:
(cosθ–sinθ)/(cosθ+sinθ) = (1–√3)/(1+√3)
Divide LHS by cos theta- we'll get:
(1-tan theta)/(1+tan theta)= 1-root3/1+root3(rationalize the RHS)
(1-tan theta)/(1+tan theta)=root3-2
so, 1-tna theta= root3-2 + (root3-2)tan theta
take tan theta terma to one side you'll get:
tan thete(root3-1)=3-root3 (take root 3 common from RHS)
tan theta=root3
tan theta=tan 60
theta=60 degree.
ok..... thankss
Similar questions