Math, asked by dghhhhbbbbufb, 10 months ago

If cos θ + sin θ = p and secθ + cosecθ = q, prove that q(p²-1)= 2 p.

Answers

Answered by Anonymous
165

 \huge {\boxed{\sf{\red{Solution.}}}}

 \bf \green{Given:-} \rm \: p = sin \ \theta + cos \theta

 \sf \: and \\

 \rm \: q = sec \:  \theta  \: + cosec  \: \theta

 \:  \:  \:  \:  \:  \:  \:  \sf =  \frac{1}{cos \:  \theta} +  \frac{1}{sin  \: \theta} \\

 \:  \:  \:  \:  \:  \rm =  \frac{sin \:  \theta + cos  \: \theta}{sin \:  \theta \: cos  \: \theta} \\

 \sf Now(p {}^{2}  - 1) \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: (as \: required \: in \: L.H.S.)

 \:  \:  \:  \:  \:  \:  \:  \:  =  \rm (sin  \: \theta + cos \:  \theta) {}^{2}  - 1

 \:  \:  \:  \:    =  \sf sin {}^{2}  \:  \theta + cos {}^{2}  \:  \theta + 2 \: sin \:  \theta \: cos \:  \theta - 1

  \rm = 1 + 2 \: sin \:  \theta \: cos  \: \theta - 1 = 2 \: sin \:  \theta \: cos \:  \theta

 \sf Putting \: these \: values of \red{q} \: and \red{(p {}^{2}  - 1)}  \\ \sf in \: L.H.S.

 \rm L.H.S. =q(p {}^{2}  - 1)

 =  \:  \:  \:  \sf  \frac{(sin \:  \theta + cos \:  \theta)}{sin  \: \theta \: cos \:  \theta}2 \: sin  \: \theta \: cos \:  \ \theta \\

 \:  \:  \:  \rm = 2(sin  \: \theta + cos \:  \theta) = 2p = R.H.S.

Similar questions