If cos square theta - sin square theta = tan square Alfa
then prove that cos square Alfa - sin square Alfa = tan square theta
Answers
Answered by
1
Answer:L.H.S=(tanα+cscβ)
2
−(cotβ−secα)
2
=tan
2
α+csc
2
β+2tanαcscβ−cot
2
β−sec
2
α+2cotβsecα
=(tan
2
α−sec
2
α)+(csc
2
β−cot
2
β)+2tanαcscβ+2cotβsecα
=−1+1+2tanαcscβ+2cotβsecα
=2tanαcotβ(
sinβ
1
cosβ
sinβ
+
cosα
1
sinα
cosα
)
=2tanαcotβ(secβ+cscα)
=R.H.S
Hence proved.
Step-by-step explanation:
Similar questions