If cos teeta + cos^2 teeta = 1 find the value of sin ^2 teeta +sin^4 teeta
Answers
cos(α)+cos²a=1
cos(α)+cos²a=1cos(a)=1-cos^2a
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore ,
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 a
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 a
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4a
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1Therefore ,
cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1Therefore ,Sin^2(a)+sin^4(a)=1