Math, asked by Swapnapalarapu, 10 months ago

If cos teeta + cos^2 teeta = 1 find the value of sin ^2 teeta +sin^4 teeta ​

Answers

Answered by Megarox
1

cos(α)+cos²a=1

cos(α)+cos²a=1cos(a)=1-cos^2a

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore ,

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 a

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 a

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4a

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1Therefore ,

cos(α)+cos²a=1cos(a)=1-cos^2asin^2 a + cos^2 a= 1therefore , 1- cos^2 a = sin^2 acos a = sin^2 acos^2 a= sin^4aNow,cos(a)+cos^2(a)=1Sin^2(a)+sin^4(a)=cos (a)+cos^2(a)=1Therefore ,Sin^2(a)+sin^4(a)=1

Similar questions