if cos tetha+sin tetha=root2cos tetha, show that cos tetha-sin tetha =root2 sin tetha
Answers
Answered by
1
Answer:
cos∅+sin∅=√2cos∅
Squaring both sides
⇒(cos∅+sin∅)²=(√2cos∅)²
⇒cos²∅+sin²∅+2cos∅sin∅=2cos²∅
⇒cos²∅-sin²∅=2cos∅sin∅
⇒(cos∅-sin∅)(cos∅+sin∅)=2cos∅sin∅
⇒(cos∅-sin∅)=2cos∅sin∅/(cos∅+sin∅)
⇒(cos∅-sin∅)=2cos∅sin∅/√2cos∅ [∵cos∅+sin∅=√2cos∅]
⇒cos∅-sin∅=√2sin∅
HOPE THIS HELPS U
PLS MARK AS BRAINLIEST
Similar questions