Math, asked by InnocentBOy143, 1 year ago

If cos∅=\frac{1}{\sqrt{122} }, then find tan∅.

Answers

Answered by Anonymous
11

SOLUTION

cos \theta =  \frac{</u><u>B</u><u>ase }{</u><u>H</u><u>ypotenuse}  =  \frac{1}{ \sqrt{122} }  \\  \\  =  &gt;  {</u><u>P</u><u>}^{2}  =  {</u><u>H</u><u>}^{2}  -  {</u><u>B</u><u>}^{2}  \\  \\  =  &gt;  {</u><u>P</u><u>}^{2}  = ( { \sqrt{122} )}^{2}  - ( {1)}^{2}  \\  \\  =  &gt;  {</u><u>P</u><u>}^{2}  = 122 - 1 \\  \\  =  &gt;  {</u><u>P</u><u>}^{2}  = 121 \\  \\  =  &gt; </u><u>P</u><u> =  \sqrt{121}  \\  \\  =  &gt; </u><u>P</u><u> = 11cm \\  \\ now \\   =  &gt; tan \theta  =  \frac{</u><u>P</u><u>}{</u><u>B</u><u>}  =  \frac{11}{1}  = 11cm

Hope it helps ☺️

Attachments:
Answered by rishabh1894041
0

Step-by-step explanation:

cos \alpha  =  \frac{1}{ \sqrt{122} }  \\  {cos}^{2}  \alpha  =  \frac{1}{122}  \\ 1 -  {sin}^{2}  \alpha  =  \frac{1}{122}  \\  {sin}^{2}  \alpha  =  \frac{121}{122} \\  sin \alpha  =  \frac{11}{ \sqrt{122} }  \:,  \:  \frac{ - 11}{ \sqrt{122} }  \\  \\ tan \alpha  = 11 \: , \:  - 11 \\ If cosA is in first quadrant, then tanA is in first quadrant, hence positive &amp; </p><p>if cosA is in fourth quadrant,</p><p>  tanA is in fourth quadrant, hence tanA is negative value.\\ hope \: it \: willhelp \: you..

Similar questions