Math, asked by riya4794, 1 year ago

If cos θ = \frac{5}{13} and 270° < θ < 360°, evaluate sin(\frac{\theta}{2}) and cos(\frac{\theta}{2}).

Answers

Answered by somi173
5

Given that

270° < θ < 360°

Dividing it by 2, we get

270°/2 < θ/2 < 360/2

135° < θ/2 < 180°

So θ/2 lies in quadrant 2.

Sin θ/2 will be positive and Cos θ/2 will be negative.

Kindly see the Attachment for detailed Answer.

Attachments:
Answered by MaheswariS
4

Answer:


Step-by-step explanation:

Formula used:

cosA=1-2{sin}^2(\frac{A}{2})\\\\cosA=2{cos}^2(\frac{A}{2})-1\\



Given:

cos\theta=\frac{5}{13}\\\\1-2{sin}^2(\frac{\theta}{2})=\frac{5}{13}\\\\1-\frac{5}{13}=2{sin}^2(\frac{\theta}{2})

\frac{8}{13}=2{sin}^2(\frac{\theta}{2})\\\\\frac{8}{26}={sin}^2(\frac{\theta}{2})\\\\

\frac{2\sqrt{2}}{\sqrt{13}\sqrt{2} }=sin(\frac{\theta}{2})\\

sin(\frac{\theta}{2})=\frac{2}{\sqrt{13}}\\

[since \frac{\theta}{2} lies\: in \:II quad.]

Now,\\cos\theta=\frac{5}{13}\\2{cos}^2(\frac{\theta}{2})-1=\frac{5}{13}\\2{cos}^2(\frac{\theta}{2})=\frac{5}{13}+1\\2{cos}^2(\frac{\theta}{2})=\frac{18}{13}\\

{cos}^2(\frac{\theta}{2})=\frac{9}{13}\\cos(\frac{\theta}{2})=-\frac{3}{\sqrt{13}}\\

Similar questions