if cos+sin= cos, show that cos - sin=
prerna2018:
;) thanks
Answers
Answered by
11
--> cos θ + sin θ = √2 cos θ
--> sin θ = √2 cos θ - cos θ
=> sin θ = ( √2 - 1 ) cos θ
=> [ sin θ / ( √2 - 1 ) ] = cos θ
=> [ sin θ ( √2 + 1 ) / ( 2 - 1 ) ] = cos θ
=> [ √2 sin θ + sin θ ] = cos θ
=> cos θ - sin θ = √2 sin θ
Answered by
18
HERE, I AM HOLDING "THETAS" AS "X".
Then,
cos X + sin X = √2 cos X.
We can definitely say,
cos²X + sin²X = 1
Or, (cosX + sinX)² - 2 cosX sinX = 1
Or, (√2 cosX)² = 1 + 2 cosX sinX
Or, 2 cos²X = sin²X + cos²X + 2 cosX sinX
Or, cosX sinX = (cos²X - sin²X)/2
Now, (cosX - sinX)²
= 1 - 2 sinX cosX
= 1 - 2 {(cos²X-sin²X)/2}
= 1 - cos²X + sin²X
= 2 sin²X
HENCE, WE CAN SAY :
(cosX - sinX) = √2 sin X [PROVED]
Similar questions