Math, asked by prerna2018, 1 year ago

if cos\theta+sin\theta=\sqrt{2} cos\theta, show that cos\theta - sin\theta= \sqrt{2}sin[tex]\theta


prerna2018: ;) thanks

Answers

Answered by vasanthij97
11

--> cos θ + sin θ = √2 cos θ

--> sin θ = √2 cos θ - cos θ

=> sin θ = ( √2 - 1 ) cos θ

=> [ sin θ / ( √2 - 1 ) ] = cos θ

=> [ sin θ ( √2 + 1 ) / ( 2 - 1 ) ] = cos θ

=> [ √2 sin θ + sin θ ] = cos θ

=> cos θ - sin θ = √2 sin θ


prerna2018: ᵗʱᵃᵑᵏᵧₒᵤও٩(⁎❛ᴗ˂⁎)
vasanthij97: my pleasure
Answered by Anonymous
18
\boxed{\bold{\huge{SOLUTION\:\: :}} }

HERE, I AM HOLDING "THETAS" AS "X".

Then,

cos X + sin X = √2 cos X.

We can definitely say,

cos²X + sin²X = 1

Or, (cosX + sinX)² - 2 cosX sinX = 1

Or, (√2 cosX)² = 1 + 2 cosX sinX

Or, 2 cos²X = sin²X + cos²X + 2 cosX sinX

Or, cosX sinX = (cos²X - sin²X)/2

Now, (cosX - sinX)²

= 1 - 2 sinX cosX

= 1 - 2 {(cos²X-sin²X)/2}

= 1 - cos²X + sin²X

= 2 sin²X

HENCE, WE CAN SAY :

(cosX - sinX) = √2 sin X [PROVED]

Anonymous: Welcome bhavana :-(
Anonymous: ✌✌
Anonymous: ✌✌☺☺
Anonymous: ❌chat in inbox na ❌
AdorableAstronaut: Yea!!
Similar questions