Math, asked by nabarun296, 2 months ago

If cos theta =12÷13 find tan theta

Answers

Answered by Anonymous
39

Given :-

\sf{cos\theta} = \sf\dfrac{12}{13}

To find :-

\sf{tan\theta}

SoLuTiOn :-

As we know that ,

\sf{cos\theta} = \dfrac{adjacent}{hypotenuse}

Since ,

  • Adjacent side = 12
  • Hypotenuse = 13

From Pythagoras theorem we can find opposite side

\sf{(Adj)^2 +(opp)^2 = (hyp)^2}

\sf{ (12)^2 + (opp)^2 = (13)^2}

\sf{ 144 + (opp)^2 = 169}

\sf{(opp)^2 = 169- 144}

\sf{(opp)^2 = 25}

\sf{(opp)^2 = 5^2}

\sf{opp = 5}

Since opposite side is 5

  • opposite side- 5
  • hypotenuse - 13
  • adjacent- 12

Now ,

\sf{tan\theta} = \sf\dfrac{opposite}{adjacent}

\sf{tan\theta} = \sf\dfrac{5}{12}

Required answer:-

\sf{tan\theta} = \sf\dfrac{5}{12}

Know more :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Trigonometric Identities:-

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations:-

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios:-

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions