Math, asked by ritika8634, 1 year ago

if cos theta = 12/ 13 , find the value of sin theta ( 1-tan theta )

Answers

Answered by yashshaw91
23
35/156 is the answer
Attachments:
Answered by harendrachoubay
17

The value of \sin \theta (1-\tan \theta)=\dfrac{35}{156}.

Step-by-step explanation:

We have,

\cos \theta=\dfrac{12}{13}

To find, the value of \sin \theta (1-\tan \theta)=?

\cos \theta=\dfrac{12}{13}=\dfrac{b}{h}

p=\sqrt{h^{2}-b^{2}}

Where, b =base, p = perpendicular and h = hypotaneous

p=\sqrt{13^{2}-12^{2}}=\sqrt{165-144}

=\sqrt{25} =5

\sin \theta=\dfrac{p}{h}=\dfrac{5}{13} and

\tan \theta=\dfrac{p}{b}=\dfrac{5}{12}

The value of \sin \theta (1-\tan \theta)

=\dfrac{5}{13} (1-\dfrac{5}{12})

=\dfrac{5}{13} (\dfrac{12-5}{12})=\dfrac{5}{13} \times \dfrac{7}{12}

=\dfrac{35}{156}

Thus, the value of \sin \theta (1-\tan \theta)=\dfrac{35}{156}.

Similar questions