Math, asked by shubham6088gmailcom, 1 year ago

if cos theta = 2 show that cot theta + sin theta / 1 + cos theta = 2

Answers

Answered by Anonymous
78

hey mate ... here is ur solution

i hope it's helpful

plz mark me

Attachments:
Answered by mysticd
23

Answer:

If \: cosec\theta = 2 \: then\\ cot\theta+\frac{sin\theta}{(1+cos\theta)}=2

Step-by-step explanation:

 Given \: cosec\theta = 2 --(1)

LHS = cot\theta+\frac{sin\theta}{(1+cos\theta)}

=cot\theta+\frac{sin\theta(1-cos\theta)}{(1+cos\theta)(1-cos\theta)}

=cot\theta+\frac{sin\theta(1-cos\theta)}{1^{2}-cos^{2}\theta}

=cot\theta+\frac{sin\theta(1-cos\theta)}{sin^{2}\theta}

=cot\theta+\frac{(1-cos\theta)}{sin\theta}

=cot\theta+\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}

=cot\theta+cosec\theta-cot\theta

=cosec\theta\\=2\:[From\:(1)]\\=RHS

Therefore,

If \: cosec\theta = 2 \: then\\ cot\theta+\frac{sin\theta}{(1+cos\theta)}=2

•••♪

Similar questions