If cos theta = √3/2
show that 4 cos³theta - 3cos theta =0
Answers
Step-by-step explanation:
GIVEN:−
\bf{sin \theta \: = \frac{ \sqrt{3} }{2}}sinθ=
2
3
\bf{TO \: \: PROVE \colon - }TOPROVE:−
\bf{4 \cos ^{3} \theta} - 3 \cos \theta = - 14cos
3
θ−3cosθ=−1
SOLVING LHS
→ As we know
\bf{ sin \theta \: = \frac{prependicular}{hypotenuse}}sinθ=
hypotenuse
prependicular
Hence
→ perpendicular = √3 units
→ hypotenuse = 2 units
so , let's find base
According to Pythagoreas theorem
» (hypotenuse)² = (perpendicular)² + (base)²
Hence
» (base)² = (perpendicular)² -(hypotenuse)²
» (base)² = (2)² - (√3)²
» (base)² = 4 - 3
→ base = √1
→ base = 1 unit
Hence
\begin{gathered}\bf{ \cos \theta \: = \frac{base}{hypotenuse}} \\ \\ \bf \implies \cos \theta = \frac{1}{2}\end{gathered}
cosθ=
hypotenuse
base
⟹cosθ=
2
1
now put the value and get the result
\bf \implies \: 4 \times (\frac{1}{2} ) ^{3} - 3 \times \frac{1}{2}⟹4×(
2
1
)
3
−3×
2
1
\bf \implies \: 4 \times \frac{1}{8} - \frac{3}{2}⟹4×
8
1
−
2
3
\begin{gathered}\huge \bf \implies \frac{1}{2} - \frac{3}{2} \\ \\ \huge \bf \implies \: \frac{ 1 - 3}{2} \\ \\ \huge \bf \implies \: \frac{ - 2}{2} \\ \\ \huge \tt \implies \: - 1\end{gathered}
⟹
2
1
−
2
3
⟹
2
1−3
⟹
2
−2
⟹−1
\huge \sf{LHS = RHS}LHS=RHS
HENCE PROVED ★
Answer:
ya answer is zero.
Step-by-step explanation:
just put the value of cos theta in the given using RHL AND LHL.
Then verified LHL = RHL