Math, asked by Ritesshh1279, 1 year ago

If cos theta = 3/5 find sin theta - cot theta / 2 tan theta

Answers

Answered by MaheswariS
37

Answer:

\frac{sin\theta-cot\theta}{2\:tan\theta}=\frac{3}{160}

Step-by-step explanation:

Given:

cos\theta=\frac{3}{5}

sin^2\theta=1-cos^2\theta

\implies\:sin^2\theta=1-(\frac{3}{5})^2

\implies\:sin^2\theta=1-\frac{9}{25}

\implies\:sin^2\theta=\frac{16}{25}

\implies\:\bf{sin\theta=\frac{4}{5}}

tan\theta=\frac{sin\theta}{cos\theta}

tan\theta=\frac{4/5}{3/5}

\implies\:\bf{tan\theta=\frac{4}{3}}

\implies\:\bf{cot\theta=\frac{3}{4}}

Now,

\frac{sin\theta-cot\theta}{2\:tan\theta}

=\frac{\frac{4}{5}-\frac{3}{4}}{2(\frac{4}{3})}

=\frac{\frac{16-15}{20}}{\frac{8}{3}}

=\frac{\frac{1}{20}}{\frac{8}{3}}

=\frac{1}{20}\times\frac{3}{8}

=\frac{3}{160}

\implies\boxed{\bf{\frac{sin\theta-cot\theta}{2\:tan\theta}=\frac{3}{160}}}

Answered by chrismatthew
24

Answer:

Step-by-step explanation:. Sorry for the bad handwriting

Attachments:
Similar questions