If cos theta=-3/5 , π< 0<3π/2 find the value of cosec theta + Cot theta /sec theta-tan teheta
Answers
Answer:
Here you go...
Step-by-step explanation:
sin 0=4/5
tan 0= -4/3
(1/sin 0 - 3/4)/(1/cos 0 +4/3)
=(5/4-3/4)/(4/3-5/3)
= -3/2
Hope it helps!
Answer:cosθ=
5
−3
sinθ=
1−cos
2
θ
sinθ=
1−(
5
−3
)
2
sinθ=
1−
25
9
sinθ=
25
16
∴ sinθ=±
5
4
π<θ<
2
3π
Here, θ lies in 3
rd
quadrant.
So,sinθ with be negative.
∴ sinθ=
5
−4
cosecθ=
sinθ
1
=
−4/5
1
=
4
−5
secθ=
cosθ
1
=
−3/5
1
=
3
−5
tanθ=
cosθ
sinθ
=
−3/5
−4/5
=
3
4
cotθ=
tanθ
1
=
4/3
1
=
4
3
Now,
secθ−tanθ
cosecθ+cotθ
⇒
3
−5
−
3
4
4
−5
+
4
3
⇒
−9/3
−2/4
⇒
6
1
cosθ=
5
−3
sinθ=
1−cos
2
θ
sinθ=
1−(
5
−3
)
2
sinθ=
1−
25
9
sinθ=
25
16
∴ sinθ=±
5
4
π<θ<
2
3π
Here, θ lies in 3
rd
quadrant.
So,sinθ with be negative.
∴ sinθ=
5
−4
cosecθ=
sinθ
1
=
−4/5
1
=
4
−5
secθ=
cosθ
1
=
−3/5
1
=
3
−5
tanθ=
cosθ
sinθ
=
−3/5
−4/5
=
3
4
cotθ=
tanθ
1
=
4/3
1
=
4
3
Now,
secθ−tanθ
cosecθ+cotθ
⇒
3
−5
−
3
4
4
−5
+
4
3
⇒
−9/3
−2/4
⇒
6
1
Step-by-step explanation:
make me the brainliest