Math, asked by darkcell578, 6 hours ago

If cos theta=-3/5 , π< 0<3π/2 find the value of cosec theta + Cot theta /sec theta-tan teheta

Answers

Answered by aakansha2424
1

Answer:

Here you go...

Step-by-step explanation:

sin 0=4/5

tan 0= -4/3

(1/sin 0 - 3/4)/(1/cos 0 +4/3)

=(5/4-3/4)/(4/3-5/3)

= -3/2

Hope it helps!

Answered by rp9861774
0

Answer:cosθ=  

5

−3

 

sinθ=  

1−cos  

2

θ

 

sinθ=  

1−(  

5

−3

)  

2

 

 

sinθ=  

1−  

25

9

 

 

sinθ=  

25

16

 

 

∴  sinθ=±  

5

4

 

π<θ<  

2

 

Here, θ lies in 3  

rd

 quadrant.

So,sinθ with be negative.

∴  sinθ=  

5

−4

 

cosecθ=  

sinθ

1

=  

−4/5

1

=  

4

−5

 

secθ=  

cosθ

1

=  

−3/5

1

=  

3

−5

 

tanθ=  

cosθ

sinθ

=  

−3/5

−4/5

=  

3

4

 

cotθ=  

tanθ

1

=  

4/3

1

=  

4

3

 

Now,

secθ−tanθ

cosecθ+cotθ

 

⇒    

3

−5

−  

3

4

 

4

−5

+  

4

3

 

 

⇒    

−9/3

−2/4

 

⇒    

6

1

 

cosθ=  

5

−3

 

sinθ=  

1−cos  

2

θ

 

sinθ=  

1−(  

5

−3

)  

2

 

 

sinθ=  

1−  

25

9

 

 

sinθ=  

25

16

 

 

∴  sinθ=±  

5

4

 

π<θ<  

2

 

Here, θ lies in 3  

rd

 quadrant.

So,sinθ with be negative.

∴  sinθ=  

5

−4

 

cosecθ=  

sinθ

1

=  

−4/5

1

=  

4

−5

 

secθ=  

cosθ

1

=  

−3/5

1

=  

3

−5

 

tanθ=  

cosθ

sinθ

=  

−3/5

−4/5

=  

3

4

 

cotθ=  

tanθ

1

=  

4/3

1

=  

4

3

 

Now,

secθ−tanθ

cosecθ+cotθ

 

⇒    

3

−5

−  

3

4

 

4

−5

+  

4

3

 

 

⇒    

−9/3

−2/4

 

⇒    

6

1

 

Step-by-step explanation:

make me the brainliest

Similar questions