If cos theta =3 by 5 then show. That 5 sin theta -3 tan theta = 0
Answers
Answered by
7
Given:
- cos Ф = 3/5
To show,
- 5 sinФ - 3 tan Ф = 0
Now,
We know that,
- sinФ = P/H
- cosФ = B/H
- tanФ = P/B
- cotФ = B/P
- secФ = H/B
- cosecФ = H/P
[H = Hypotenuse, P = perpendicular, and B = Base]
So,
- cos Ф = 3/5 = B/H
Let B = 3k, and H = 5k
Now
- Hypotenuse² = Perpendicular² + Base²
⇒ (5k)² = (Perpendicular)² + (3k)²
⇒ (5k)² - (3k)² = (Perpendicular)²
⇒ 25k² - 9k² = (Perpendicular)²
⇒ 16k² = (Perpendicular)²
[Squaring both sides we get]
⇒ 4k = Perpendicular
Now,
- sinФ - 3 tan Ф = 0
LHS
= 5 sinФ - 3 tan Ф
= 5 *(P/H) - 3 * (P/B)
= 5 *(4k/5k) - 3 * (4k/3k)
= 5 * (4/5) - 3 * (4/3)
= 4 - 4
= 0
Hence, proved.
Answered by
53
Given:
- Adjecent side = 3
- Hypotenuse side= 5
Now ,
And,
Then,
LHS = RHS
Hence proved...
Similar questions