Math, asked by marysreya1550, 7 months ago

If cos theta =3 by 5 then show. That 5 sin theta -3 tan theta = 0

Answers

Answered by BloomingBud
7

Given:

  • cos Ф = 3/5

To show,

  • 5 sinФ - 3 tan Ф = 0

Now,

We know that,

  • sinФ = P/H
  • cosФ = B/H
  • tanФ = P/B
  • cotФ = B/P
  • secФ = H/B
  • cosecФ = H/P

[H = Hypotenuse, P = perpendicular, and B = Base]

So,

  • cos Ф = 3/5 = B/H

Let B = 3k, and H = 5k

Now

  • Hypotenuse² = Perpendicular² + Base²

⇒ (5k)² = (Perpendicular)² + (3k)²

⇒ (5k)² - (3k)² = (Perpendicular)²

⇒ 25k² - 9k² = (Perpendicular)²

⇒ 16k² = (Perpendicular)²

[Squaring both sides we get]

⇒ 4k = Perpendicular

Now,

  • sinФ - 3 tan Ф = 0

LHS

= 5 sinФ - 3 tan Ф

= 5 *(P/H) - 3 * (P/B)

= 5 *(4k/5k) - 3 * (4k/3k)

= 5 * (4/5) - 3 * (4/3)

= 4 - 4

= 0

Hence, proved.

Answered by Anonymous
53

 { \underline{ \underline{ \sf{ \red{Question : }}}}}

 \tt \bold{If \:  \:  cos  \:  \: \theta \:  \:  =  \:  \:  \frac{3}{5}   \:  \: then  \:  \: show \:  \:  that \:  \:  5  \:  \: sin \:  \:  \ theta \:  \:  -3 \:  \:  tan  \:  \: \theta =0}

{ \underline{ \underline{ \sf{ \red{Solution : }}}}}

Given:

 \tt \bold \: cos \:  \:  \theta \:  =  \frac{3}{5}  =  \frac{Adjecent \: \: side }{hypotenuse \:  \: side}  \\

  • Adjecent side = 3
  • Hypotenuse side= 5

Now ,

 \tt \bold \: opposite \:  \: side \:  \:  =  \:  \:  \sqrt{ {(hypotenuse \:  \: side)}^{2}  -  {(adjecent \: side)}^{2} }  \\  \\  \tt \bold \: opposite \:  \: side \:  \:  =  \:  \: \sqrt{ {(5)}^{2}  -  {(3)}^{2} }  \\  \\  \tt \bold \: opposite \:  \: side \:  \:  =  \:  \: \sqrt{25 - 9}  \\  \\  \tt \bold \: opposite \:  \: side \:  \:  =  \:  \: \sqrt{16}  \\  \\  \tt \bold \: opposite \:  \: side \:  \:  =  \:  \:4

And,

 \implies \tt \bold \: sin \:  \theta \:  =  \frac{opposite \:  \: side}{hypotenuse \:  \: side}  =  \frac{4}{5}  \\  \\  \implies \tt \bold \: tan \:  \theta \:  =  \frac{opposite \:  \: side}{adjecent\:  \: side}  =  \frac{4}{3}

Then,

 \implies \sf \large \: 5 \:  \: sin \:  \theta \:  \:  - 3 \:  \: tan \:  \theta \\  \\ \implies \sf \large \cancel5 \left( \frac{4}{ \cancel5}  \right) -  \cancel3 \:  \left( \frac{4}{ \cancel3}  \right) \\  \\ \implies \sf \large4 - 4 \\  \\ \implies \sf \large0

LHS = RHS

Hence proved...

Similar questions