Math, asked by srijeetmarpalli3233, 1 year ago

if cos theta = 4/5 then find the value of 3 cos theta + 2cosec theta /4 sin theta +2cot theta​

Answers

Answered by Ishu8364
7

Hope this answer will be helpful!

If so, then hit thanks

Attachments:

Ishu8364: plzz mark it as the brainliest!
Answered by Anonymous
6

given that cos∅= 4/5

consider any right angle ∆ ABC.

we know that cosec∅ = base/hypotenuse

therefore the hypotenuse of the ∆ABC is = 5 and base = 4

sin∅ = perpendicular/base

cot∅ = base/perpendicular

cosec∅ = hypotenuse/perpendicular

to find it's value, first we need to find the perpendicular

by Pythagoras theorem,

➡ h² = b² + p²

➡ AC² = BC² + AB²

➡ 5² = 4² + AB²

➡ 25 = 16 + AB²

➡ 25 - 16 = AB²

➡ 9 = AB²

➡ AB = √9

➡ AB = 3cm

hence, the perpendicular is 3cm.

therefore values of :-

  • sin∅ = 3/4
  • cot∅ = 4/3
  • cosec∅ = 5/3

hence, value of (3cos∅ + 2cosec∅)/(4sin∅ + 2cot∅) is :-

 \sf =  \frac{3 \times  \frac{4}{5} + 2 \times  \frac{5}{3}  }{4 \times  \frac{3}{4} + 2 \times  \frac{5}{3}  }  \\  \\  \sf =  \frac{ \frac{12}{5}  +  \frac{10}{3} }{ \frac{12}{4} +  \frac{10}{3}  }  \\  \\  \sf =  \frac{ \frac{(12 \times 3)}{(5 \times 3) } +  \frac{(10 \times 5)}{(3 \times 5)}  }{ \frac{(12 \times 3)}{(4 \times 3)}  +  \frac{(10 \times 4)}{(3 \times 4)} }  \\  \\ \large \sf =  \frac{ \frac{36}{15} +  \frac{50}{15}  }{ \frac{36}{12}  +  \frac{40}{12} }  \\  \\  \sf =  \frac{86}{15}  \times  \frac{12}{76}  \\  \\  \sf =  \frac{43}{5}  \times  \frac{4}{38}  \\  \\  \sf =  \frac{ \cancel{172}}{ \cancel{76}} \\  \\  \sf canceling \: both \: by \: 4 \\  \\  \sf = \boxed{  \frac{43}{19} }

Attachments:
Similar questions