Math, asked by vsk236315, 19 days ago

If cos theta - 4 sin theta = 1, then sin + 4 cos theta =​

Answers

Answered by Anonymous
60

Given:

  • Cos theta - 4 sin theta = 1

To find:

  • Sin + 4 cos theta = ?

Solution:

Cos theta - 4 sin theta = 1 — Eq - 1...

Sin theta + 4 cos theta = x — Eq - 2...

Squaring and adding both equations :

(Cos theta)² - (4 sin theta)² + (Sin theta)² + (4 cos theta)² = 1² + x²

→ Cos² theta + 16 Sin² theta + Sin² theta + 16 cos² theta = 1 + x²

→ Cos² theta + Sin² theta + 16 cos² theta + 16 Sin² theta = 1 + x²

Sin² theta + Cos² theta = 1

→ 1 + 16 cos² theta + 16 Sin² theta = 1 + x²

Taking 16 common,

→ 1 + 16 (cos² theta + Sin² theta) = 1 + x²

→ 1 + 16 (1) = 1 + x²

→ 1 + 16 = 1 + x²

→ 1 - 1 + 16 = x²

→ 16 = x²

→ x = √16

→ x = ±4

∴ Hence, sin + 4 cos theta = ±4.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

More info :

Trigonometric Identities :

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • csc²θ - cot²θ = 1

Trigonometric relations :

  • sinθ = 1/cscθ
  • cosθ = 1 /secθ
  • tanθ = 1/cotθ
  • tanθ = sinθ/cosθ
  • cotθ = cosθ/sinθ

Aryan0123: Nice answer !
Anonymous: Thank ya!!
Yuseong: La Jawab!❤️ Well answered, Prashu!
Anonymous: Thankyou anu! ✨
Answered by Anonymous
35

Given:-

\red{➤}\:\sf \cos \theta - 4 \sin \theta = 1

\\

To Find:-

\orange{☛}\:\sf  Value\:of\: \sin \theta + 4 \cos \theta

\\

Solution:-

\begin{gathered}\\\quad\longrightarrow\quad\sf \cos \theta - 4 \sin \theta = 1\quad\quad(given) \\\end{gathered}

Squaring Both Sides-

\begin{gathered}\\\quad\longrightarrow\quad\sf (\cos \theta - 4 \sin \theta)² = 1² \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf {\cos}^2 \theta + 16 {\sin}^2 \theta-2. \sin\theta.4\cos\theta   = 1\quad(a-b)²=a²+b²-2ab)\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf 8\sin\theta\cos\theta  ={\cos}^2 \theta + 16 {\sin}^2 \theta-1 \_ \:\_ \:\_ \:(1)\\\end{gathered}

Now,

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = sin²\theta + 16\cos²\theta + 8\cos\theta\sin\theta\\\end{gathered}

Substituting (1)-

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = sin²\theta + 16\cos²\theta +{\cos}^2 \theta + 16 {\sin}^2 \theta-1  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = sin²\theta +{\cos}^2 \theta-1 + 16\cos²\theta  + 16 {\sin}^2 \theta  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = 1-1 + 16(\cos²\theta  +  {\sin}^2 \theta)\quad (sin^2\theta + cos^2\theta = 1)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = 16\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad  \sf (sin\theta + 4\cos\theta)² = 4²\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad  \boxed{\sf (sin\theta + 4\cos\theta) = ± 4}\\\end{gathered}


Anonymous: Awesome!
Yuseong: Good!
Similar questions