Math, asked by yashumohan2005, 5 months ago

if cos theta =5/13.find 5 tan theta+cos theta by 5 tan theta -12 cot theta​

Answers

Answered by Anonymous
2

\huge\bigstar \:   \huge\mathrm { \underline{ \purple{answer} }} \:  \bigstar \: </p><p></p><p> \:  \\  \\

Firstly , we will find the other side of the triangle,

that is, AB.

In △ABC,

  • ∠B = 90°
  • AC = 13
  • CB = 5

➠ By Pythagorus Theorm,

➥ AC² = AB² + BC²

➥ 13² = AB² + 5²

➥ 169 = AB² + 25

➥ AB² = 169 - 25

➥ AB² = 144

∴ AB = 12

Now ,

  • tanΘ = 12/5

  • cosΘ = 5/13

  • cotΘ = 5/12

➠ Putting these values we get,

 \tt{ \frac{5tan \theta + cos \theta}{5tan \theta - 12cot \theta} } \\  \\  \implies \tt{ \frac{ \cancel5( \frac{12}{ \cancel5}) +  \frac{5}{13}  }{ \cancel5( \frac{12}{ \cancel5} ) -  \cancel{12}( \frac{5}{ \cancel{12}}) } } \\  \\  \implies \tt{ \frac{12 +  \frac{5}{13} }{12 -5 } } \\  \\  \implies \tt{ \frac{ \frac{12(13) + 5}{13} }{7} } \\  \\  \implies \tt{ \frac{ \frac{156 + 5}{13} }{7} } \\  \\  \implies  \red{\tt{ \frac{161}{91} }}

∴ The required answer is 161/91.

Attachments:
Similar questions