if cos theta = 5/13 then find the value of cos theta, tan theta , cot theta ,sec theta and cosec theta ..
Answers
EXPLANATION.
Cos ø = 5/13 = B/H = Base/Hypotenuse.
By using the Pythagorean theorem,
we get,
→ H² = P² + B²
→ (13)² = P² + (5)²
→ 169 = P² + 25
→ 169 - 25 = P²
→ 144 = P²
→ P = √144
→ P = 12
→ Sin ø = P/H = Perpendicular/Hypotenuse
Sin ø = 12/13.
→ Cos ø = B/H = Base/Hypotenuse = 5/13.
→ Tan ø = P/B = Perpendicular/Base = 12/5.
→ Csc ø = H/P = Hypotenuse/Perpendicular
Csc ø = 13/12.
→ Sec ø = H/B = Hypotenuse/Base = 13/5.
→ Cot ø = B/P = Base/Perpendicular = 5/12.
Answer:
GIVEN : Cos A = 5/13
Since, Cos A = base / hypotenuse
By Pythagoras Theoerem
h²=p²+b²
=> 13² = p² + 5²
=> 169 = p² + 25
=> 169-25 = p²
=> 144 = p²
=> 12 = p
Therefore
p= 12 , b = 5 , h = 13
Cos A = 5/13
Tan A = p/b
= 12/5
cot A = b/p
= 5/12
sec A = h/b
= 13/5
cosec A = h/p
= 13/12
Mark me BRAINLIST ✔️