Math, asked by radhaprakash0213, 5 months ago

if cos theta =5/3 then find the value of cos theta + tan theta​

Answers

Answered by yogeshsedai28
0

Step-by-step explanation:

Hello ,

This problem can be solved by using identities

\csc( \theta) = \frac{5}{3}csc(θ)=

3

5

{ \csc( \theta) }^{2} = { \cot( \theta) }^{2} + 1csc(θ)

2

=cot(θ)

2

+1

{( \frac{5}{3}) }^{2} = { \cot( \theta) }^{2} + 1(

3

5

)

2

=cot(θ)

2

+1

{ \cot( \theta) }^{2} = \frac{25}{9} - 1cot(θ)

2

=

9

25

−1

\cot( \theta) = \sqrt{ \frac{16}{9} }cot(θ)=

9

16

\cot( \theta) = \frac{4}{3}cot(θ)=

3

4

\cot( \theta) = \frac{1}{ \tan( \theta) }cot(θ)=

tan(θ)

1

\tan( \theta) = \frac{3}{4}tan(θ)=

4

3

1 + tan^2 theta = sec^2 theta

sec^2 theta = 1 + 9/16

= 25/16

sec theta = √25/16

= 5/4

cos theta = 4/5

\begin{gathered} \cos( \theta) + \tan( \theta) = \frac{4}{5} \: + \frac{3}{4} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{16 + 15}{20} \end{gathered}

cos(θ)+tan(θ)=

5

4

+

4

3

=

20

16+15

(16 + 15)/20 = 31/20

Similar questions