Math, asked by ajay38220, 10 months ago

If Cos theta= 7/25 find the value of all T-ratios of theta​

Answers

Answered by amitkumar44481
37

AnsWer :

  • Sin theta = 24 / 25.
  • Cos theta = 7 / 25.
  • Tan theta = 24 / 7.
  • Cosec theta = 25 / 24.
  • Sec theta = 25 / 7.
  • Cot theta = 7 / 24.

SolutioN :

We know,

  • Sin²A + Cos²A = 1.

 \tt \dagger \:  \:  \:  \:  \:  {sin}^{2} \theta +  {cos}^{2}  \theta = 1.

 \tt \longmapsto {sin}^{2} \theta +  {  \bigg(\dfrac{7}{25}  \bigg)}^{2} = 1.

 \tt \longmapsto {sin}^{2} \theta +   \dfrac{49}{625} = 1.

 \tt \longmapsto {sin}^{2} \theta  = 1 -  { \dfrac{49}{625}}

 \tt \longmapsto {sin}^{2} \theta  = { \dfrac{625 - 49}{625}}

 \tt \longmapsto {sin}^{2} \theta  =  { \dfrac{576}{625}}

 \tt \longmapsto {sin}\theta  =   \sqrt{{ \dfrac{576}{625}}}

 \tt \longmapsto {sin}\theta  =  \pm { \dfrac{24}{25}}

Now, We have.

 \tt \dagger \:  \:  \:  \:  \: Sin \theta = \dfrac{Perpendicular }{Hypotenuse }.

 \tt \dagger \:  \:  \:  \:  \: Cos \theta = \dfrac{Base }{Hypotenuse }.

 \tt \dagger \:  \:  \:  \:  \: tan\theta = \dfrac{Perpendicular }{Base }.

 \tt \dagger \:  \:  \:  \:  \: Cosec \theta = \dfrac{Hypotenuse}{Perpendicular }.

 \tt \dagger \:  \:  \:  \:  \: Sec \theta = \dfrac{Hypotenuse }{Base }.

 \tt \dagger \:  \:  \:  \:  \: Cot\theta = \dfrac{Base }{Perpendicular }.

  • Sin theta = 24 / 25.
  • Cos theta = 7 / 25.
  • Tan theta = 24 / 7.
  • Cosec theta = 25 / 24.
  • Sec theta = 25 / 7.
  • Cot theta = 7 / 24.
Answered by Anonymous
4

Answer

Hi , see this attachment .

My tution teacher ' s answer not me .

PLEASE MARK ME BRAINLIEST AND FOLLOW ME.

Attachments:
Similar questions