if cos theta = 7/25 , find the value of all T-ratios of theta
Answers
Answered by
226
Hi friend,
Here's your answer,
cosθ=7/25
Therefore,
Base=7cm
Hypotenuse=25cm
By Pythagoras Theorem,
h²=p²+b²
p²=h²-b²
p²=25²-7²=625-49
p=√576=24cm
Perpendicular=24cm
sinθ=p/h= 24/25
cosθ= 7/25 [given]
tanθ=p/b= 24/7
cosecθ= 25/24 [1/sinθ]
secθ= 25/7 [1/cosθ]
cotθ= 7/24 [1/tanθ]
Hope it helps!!!!
#yashankΠsingh
Here's your answer,
cosθ=7/25
Therefore,
Base=7cm
Hypotenuse=25cm
By Pythagoras Theorem,
h²=p²+b²
p²=h²-b²
p²=25²-7²=625-49
p=√576=24cm
Perpendicular=24cm
sinθ=p/h= 24/25
cosθ= 7/25 [given]
tanθ=p/b= 24/7
cosecθ= 25/24 [1/sinθ]
secθ= 25/7 [1/cosθ]
cotθ= 7/24 [1/tanθ]
Hope it helps!!!!
#yashankΠsingh
Answered by
4
Answer:
sin theta =24/25
tan theta =24/7
sec theta =25/7
cot theta = 7/24
cosec theta =25/24
Step-by-step explanation:
cos theta =7/25 (given)
Draw a right angle triangle ABC, ∠B = 90° and ∠A = theta
we know that cos theta = base / hypotenuse =7/25
AB= 7
AC= 25
Using Pythagoras Theorem find BC
(AC)^2 =(AB)^2 + (BC)^2
(25)^2 = (7)^2 + (BC)^2
625 - 49 = 576
(BC)^2= 576
BC = ²√576
BC = 24
sin theta = BC/AC =24/25
tan theta = BC/AB =24/7
sec theta = 1 / cos theta = 25/7
cot theta = 1/ tan theta = 7/24
cosec theta = 1/ sin theta = 25 /24
#SPJ2
Attachments:
Similar questions