if cos theta = 8/17 , find sin theta
Answers
Answered by
13
Let theta be A
sin^2 A = 1 - cos^2 A
sin^2 A = 1 - ( 8/17 )^2
sin^2 A = 1 - 64/289
sin^2 A = 289 - 64 /289
sin^2 A = 225 / 289
sin A = root 225/289
sin A = 15/17
so sin theta = 15/17
sin^2 A = 1 - cos^2 A
sin^2 A = 1 - ( 8/17 )^2
sin^2 A = 1 - 64/289
sin^2 A = 289 - 64 /289
sin^2 A = 225 / 289
sin A = root 225/289
sin A = 15/17
so sin theta = 15/17
Answered by
8
cos teta =8/17
hypotenuse = 17
adjacent side = 8
opposite side = ✓17^2- 8^2 = ✓225= 15
sin teta = opposite/hypotenuse
= 15/17
hence sin teta is 15/17
hypotenuse = 17
adjacent side = 8
opposite side = ✓17^2- 8^2 = ✓225= 15
sin teta = opposite/hypotenuse
= 15/17
hence sin teta is 15/17
Similar questions