Accountancy, asked by cheruvumallik, 9 months ago

if cos theta +cos²theta=1, prove that sin¹²+3sin^10+3sin^8+sin^6+2sin⁴+2sin²-2=1​

Answers

Answered by pysk2222
0

Explanation:

search-icon-header

Search for questions & chapters

search-icon-image

Question

Bookmark

If cosθ+cos

2

θ=1, prove that sin

12

θ+3sin

10

θ+3sin

8

θ+sin

6

θ+2sin

4

θ+2sin

2

θ - 2 = 1

Medium

Solution

verified

Verified by Toppr

Given :

cosθ=1−cos

2

θ

⇒cosθ=sin

2

θ ..... [sin²x+cos²x=1]

Square on both sides ;

cos

2

θ=sin

4

θ

1−sin

2

θ=sin

4

θ ...... [sin²x+cos²x=1]

sin

4

θ+sin

2

θ=1 →equation (1)

Now cube on both sides ;

⇒sin

12

θ+sin

6

θ+3sin

4

θsin

2

θ(sin

4

θ+sin

2

θ)=1

⇒sin

12

θ+sin

6

θ+3sin

10

θ+3sin

8

θ=1

To obtain above result we add and subtract 2 on LHS side ;

⇒sin

12

θ+sin

6

θ+3sin

10

θ+3sin

8

θ+2(1)−2=1

From equation (1), 1=sin

4

θ+sin

2

θ

⇒sin

12

θ+sin

6

θ+3sin

10

θ+3sin

8

θ+2(sin

4

θ+sin

2

θ)−2=1

⇒sin

12

θ+3sin

10

θ+3sin

8

θ+sin

6

θ+2sin

4

θ+2sin

2

θ−2=1

Hence proved

Similar questions