Math, asked by adityatomar2370, 8 months ago

If(cos theta+ i sin theta) sq = x+iy p:t x sq +y sq=1​

Answers

Answered by saounksh
1

EXPLAINATION

GIVEN

⇒ x + iy = (cosθ + isinθ)²

FORMULA

  {e}^{i \theta}  =  \cos( \theta)  + i \sin( \theta )

PROOF

 x + iy = (cosθ + isinθ)²

 x + iy = (eⁱᶿ)²

 x + iy = eⁱ⁽²ᶿ⁾------(1)

Taking conjugate on both side

 x - iy = e⁻ⁱ⁽²ᶿ⁾------(2)

Multiplying (1) and (2), we get

 (x + iy)(x - iy) = eⁱ⁽²ᶿ⁾.e⁻ⁱ⁽²ᶿ⁾

 (x² + y²) = eⁱ⁽²ᶿ⁾⁻ⁱ⁽²ᶿ⁾

 (x² + y²) = e⁰

 (x² + y²) = 1

Hence Proved.

OR

 x + iy = (cosθ + isinθ)²

Taking conjugate on both side

 x - iy = (cosθ - isinθ)²

Multiplying, we get

 (x + iy)(x - iy)

= (cosθ + isinθ)²(cosθ- isinθ)²

= [(cosθ + isinθ)(cosθ- isinθ)]²

= [(cos²θ + sin²θ)]²

= [1]² = 1

Hence Proved

Similar questions