Math, asked by sanket12sawant, 1 year ago

if cos theta is equal to 7 by 8 evaluate 1 + sin theta into 1-sin theta by 1 + cos theta into 1- cos theta.

Answers

Answered by ShuchiRecites
30

Solution

→ cos∅ = 7/8

To Evaluate: (1 + sin∅)(1 - sin∅)/(1 + cos∅)(1 - cos∅)

→ (1² - sin²∅)/(1² - cos²∅)

→ (1 - sin²∅)/(1 - cos²∅)

We know that 1 - sin²∅ = cos²∅

→ cos²∅/(1 - cos²∅)

→ (7/8)²/{1 - (7/8)²}

→ (49/64)/(1 - 49/64)

→ (49/64)/(64 - 49)/64

→ 49/64 × 64/15

→ 49/15

Required answer is 49/15

Answered by Anonymous
47

\huge{\mathfrak{\red{\underline{\underline{Answer :-}}}}}

49/15

\large{\mathrm{\gray{Given :-}}}

Cos ∅ = 7/8

\large{\mathrm{\gray{To \: Find :-}}}

\LARGE{\frac{(1 +  \sin \theta)(1 -  \sin \: \theta)}{(1 +  \cos \theta)(1  -  \cos\theta)}}

Using Identity :-

\LARGE{\boxed{\boxed{\bf{\red{(a + b)(a - b) = a^{2} - b^{2}}}}}}

 \frac{( 1- { \sin}^{2}{ \theta}) }{( 1- { \cos}^{2}{ \theta}) }  \\  \\  \bf{we \: know \: that} \\  \\  \pink {\boxed{(1-  { \sin}^{2}{ \theta}) =  { \cos}^{2}  \theta}} \\  \\  \frac{ { \cos}^{2} \theta}{1 -  { \cos}^{2} \theta } \\  \\  \bf{put \: values}

» (7/8)² / (1 - 7/8)²

By taking LCM

» (49/64) / (64 - 49) / 64

» 49/64 * 64 / 15

» 49 / 15

\large{\boxed{\boxed{\bf{\red{\frac{49}{15}}}}}}

Member of "The sheild"

Leader of "The sheild"

Similar questions