Math, asked by karimgadhiya786, 4 months ago

if cos theta is equal to root 3 upon 2 find the value of 1 + tan theta upon 1 + cosec theta​

Answers

Answered by danishdubey
0

 \cos( \theta)  =  \sqrt{3} \div 2  =  \cos(30) \degree  \\  \theta = 30\degree \\ (1 +  \tan( \theta)) \div (1  +  \csc(\theta) ) = (1 +  \tan(30) \degree) + (1 +  \csc(30) \degree) \\  = (1 +1 \div \sqrt{3}) \div (1 + 2) \\ =  (\sqrt{3} + 1) \div  ( \sqrt{3} \times 3) \\  =  \frac{ \sqrt{3} + 1 }{3 \sqrt{3} }  \\  =  \frac{3  +  \sqrt{3} }{9}  \\  =  \frac{4.732}{9}  \\  = 0.52578

Answered by Anonymous
9

Given:-

 \sf \implies  cos =  \frac{ \sqrt{3} }{2}

To Find:-

To find the value of

 \frac{1 -   \sec( \theta) }{1 +  \csc( \theta) }

Solution:-

 \cos( \theta)  =  \frac{ \sqrt{3} }{2}  \\  \\ \sf \cos( \theta)  =  \cos(30 \degree)  \\  \\  \sf  \theta = 30 \degree \\  \\  \sf \frac{1 -  \sec( \theta) }{1 +  \csc( \theta) }  =  \frac{1 -  \sec(30 \degree) }{1 +  \csc(30 \degree) }

As we know that,

 \sf \cos( \theta)  =  \frac{1}{ \sec( \theta) }  \\  \\  \sf \sec(30 \degree)  =  \frac{2}{ \sqrt{3} }  \\  \\  \sf \csc( \theta)  =   \frac{1}{ \sin( \theta) }   \\  \\  \sf \csc(30 \degree)  = 2

 \sf \implies \frac{1 -  \frac{2}{ \sqrt{3} } }{1 + 2}  \\  \\  \sf \implies  \frac{ \frac{ \sqrt{3}  - 2}{ \sqrt{3} }  }{3}  \\  \\  \sf \implies \frac{ \sqrt{3} - 2 }{3 \sqrt{3} }

By rationalisation,

 \sf \implies \frac{ \sqrt{3} - 2 }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  \sf \implies \frac{3 - 2 \sqrt{3} }{9}

Similar questions