Math, asked by jkalyan, 1 year ago

if cos theta is equals to root 3 by 2 then find 4 sin square theta + tan square theta​

Answers

Answered by GulabLachman
8

Given:

\cos \: theta \:  =  \frac{ \sqrt{3} }{2}

To find:

4  \:  {sin}^{2}  \: theta +  {tan}^{2} \: theta

Solution:

\cos \: theta \:  =  \frac{ \sqrt{3} }{2}

We know that:

 {sin}^{2}  \: theta = 1 -  {cos}^{2}  \: theta

 =  > {sin}^{2}  \: theta = 1 -  ({ \frac{ \sqrt{3} }{2} )}^{2}

 =  > {sin}^{2}  \: theta = 1 -  \frac{3}{4}

 =  > {sin}^{2}  \: theta =  \frac{1}{4}

 =  > {sin}  \: theta =  \sqrt{ \frac{1}{4} }

=> sin theta = 1/2

We know,

tan theta = sin theta / cos theta

= (1/2) / (✓3/2)

= 1/✓3

 {tan}^{2}  \: theta =  \frac{1}{3}

Therefore,

4  \:  {sin}^{2}  \: theta +  {tan}^{2} \: theta

 = 4 \times  \frac{1}{4}  +  \frac{1}{3}

 = 1 +  \frac{1}{3}

 =  \frac{3 + 1}{3}

 =  \frac{4}{3}

Therefore, the value of the given expression is 4/3.

Similar questions