Math, asked by Deeksha7535, 1 year ago

If cos theta = k , 0 < k < 1 and theta is not a angle in the first quadrant then find the values of sin theta and tan theta in terms of k

Answers

Answered by JinKazama1
51

Answer:

sin(\theta)=\frac{-\sqrt{1-k^2}}{1},tan(\theta)=\frac{-\sqrt{1-k^2}}{k}

Step-by-step explanation:

1) Since,

k is positive and hence cosine of theta.

=>\theta is in fourth quadrant.

2)

 sin(\theta) and  tan(\theta)  are negative.

We know that,

sin^2(\theta)+cos^2(\theta)=1\\ \\=&gt;sin^2(\theta)+k^2=1\\ \\=&gt;sin^2(\theta)=1-k^2\\ \\=&gt;sin(\theta)=-\sqrt{1-k^2}

3) Also,

1+tan^2(\theta)=sec^2(\theta)\\ \\=&gt;tan^2(\theta)=sec^2(\theta)-1\\ \\=&gt;tan^2(\theta)=\frac{1}{cos^2(\theta)}-1=\frac{1}{k^2}-1=\frac{1-k^2}{k^2}\\ \\ =&gt;tan(\theta)=\frac{-\sqrt{1-k^2}}{k}

Hence,

\boxed{tan(\theta)=\frac{-\sqrt{1-k^2}}{k},sin(\theta)=-\sqrt{1-k^2}}

Answered by hemasrichekuri5
4

Answer:

sin theta=-√1-k²

tan theta=-√1-k²/k

Similar questions