if cos theta minus sin theta equal to root 2 Sin Theta prove that cos theta + sin theta equals to root 2 cos theta
Answers
Answered by
3
solving
costheta+sine theta =root 2 we get one by root 2=sin2theta
and also by solving cos theta -sin theta=root2sin theta we get one by root2=sin2theta therefore they are equal
costheta+sine theta =root 2 we get one by root 2=sin2theta
and also by solving cos theta -sin theta=root2sin theta we get one by root2=sin2theta therefore they are equal
Answered by
3
Step-by-step explanation:
We have,
→ cos θ + sin θ = √2cos θ .
[ Squaring both side, we get ] .
⇒ ( cos θ + sin θ )² = 2cos²θ .
⇒ cos²θ + sin²θ + 2cosθsinθ = 2cos² .
⇒ sin²θ + 2cosθsinθ = 2cos²θ - cos²θ .
⇒ sin²θ + 2cosθsinθ = cos²θ .
⇒ cos²θ - 2cosθsinθ = sin²θ .
[ Adding sin²θ both side, we get ] .
⇒ cos²θ - 2cosθsinθ + sin²θ = sin²θ + sin²θ .
⇒ ( cos θ - sin θ )² = 2sin²θ .
⇒ cos θ - sin θ = √( 2sin²θ ) .
∴ cos θ - sin θ = √2sin θ .
Hence, it is proved .
Similar questions