Math, asked by nikki118, 1 year ago

if cos theta minus sin theta equal to root 2 Sin Theta prove that cos theta + sin theta equals to root 2 cos theta

Answers

Answered by amanjaiswal33
3
solving 
costheta+sine theta =root 2 we get one by root 2=sin2theta 
and also by solving cos theta -sin theta=root2sin theta we get one by root2=sin2theta therefore they are equal
Answered by Anonymous
3

Step-by-step explanation:

We have,

→ cos θ + sin θ = √2cos θ .

[ Squaring both side, we get ] .

⇒ ( cos θ + sin θ )² = 2cos²θ .

⇒ cos²θ + sin²θ + 2cosθsinθ = 2cos² .

⇒ sin²θ + 2cosθsinθ = 2cos²θ - cos²θ .

⇒ sin²θ + 2cosθsinθ = cos²θ .

⇒ cos²θ - 2cosθsinθ = sin²θ .

[ Adding sin²θ both side, we get ] .

⇒ cos²θ - 2cosθsinθ + sin²θ = sin²θ + sin²θ .

⇒ ( cos θ - sin θ )² = 2sin²θ .

⇒ cos θ - sin θ = √( 2sin²θ ) .

∴ cos θ - sin θ = √2sin θ .

Hence, it is proved .

Similar questions