Math, asked by Mahica1449, 1 year ago

If cos theta +sec theta =-5/2 then what is the value cos^2 theta +sec^2 theta

Answers

Answered by PravinRatta
0

If cos \alpha + sec\alpha =\frac{-5}{2} , what is the value of cos^{2} \alpha +sec^{2} \alpha ?

Given,

cos \alpha + sec\alpha =\frac{-5}{2}

To find,

cos^{2} \alpha +sec^{2} \alpha

Solution,

Given cos \alpha + sec\alpha =\frac{-5}{2}

On squaring both sides, we get

(cos \alpha + sec\alpha) ^{2}  = \frac{25}{4}

cos^{2} \alpha + 2cos\alpha sec\alpha +sec^{2} \alpha = \frac{25}{4}

cos^{2} \alpha +sec^{2} \alpha = \frac{25}{4}-2cos\alpha sec

= \frac{25}{4} -(2cos\alpha *\frac{1}{cos\alpha } )

= (25/4) - 2

= (25-8)/2

=17/4

cos^{2} \alpha +sec^{2} \alpha = 17/4

#SPJ3

Similar questions