Math, asked by tejasurya6593, 9 months ago

If cos theta + sec theta equals to 3 then find the value of cos square theta plus sec square theta

Answers

Answered by Anonymous
4

Question :-

If \sf{cos\theta+sec\theta=3}, then find the value of \sf{cos^2\theta+sec^2\theta}.

Solution :-

\sf{cos\theta+sec\theta=3}

\to\sf{(cos\theta+sec\theta)^2=3^2\:[Squaring\:both\: sides]}

\to\sf{cos^2\theta+sec^2\theta+2.\:cos\theta.\:sec\theta=9}

\to\sf{cos^2\theta+sec^2\theta+2.\:cos\theta\times\dfrac{1}{cos\theta}=9}

\to\sf{cos^2\theta+sec^2\theta+2\times\:1=9}

\to\sf{cos^2\theta+sec^2\theta+2=9}

\to\sf{cos^2\theta+sec^2\theta=9-2}

\to\sf{cos^2\theta+sec^2\theta=7\:[Answer]}

__________________________

Some formulas :-

★ sin²A + cos²A = 1

★ 1 + tan²A = sec²A

★ 1 + cot²A = cosec²A

★ cos²A - sin²A = cos2A

★ sin(A+B) = sinAcosB + cosAsinB

★ sin(A-B) = sinAcosB - cosAsinB

★ cos(A+B) = cosAcosB - sinAsinB

★ cos(A-B) = cosAcosB + sinAsinB

Answered by Anonymous
1

Given :

Cos(Φ) + Sec(Φ)= 3

To find :

Cos(Φ)² + Sec(Φ)²

Solution :

Squaring on both sides , we get

{Cos(Φ) + Sec(Φ)}² = (3)²

Cos(Φ)² + Sec(Φ)² + 2Cos(Φ)Sec(Φ) = 9

Cos(Φ)² + Sec(Φ)² + 2 × 1 = 9

Cos(Φ)² + Sec(Φ)² = 9 - 2

Cos(Φ)² + Sec(Φ)² = 7

 \therefore The required value is 7

Remember :

 \mapsto Cos(Φ) = 1/Sec(Φ)

Similar questions