if cos theta+ sin theta =1 prove that cos theta - sin theta = plus or minus 1
Answers
Answered by
63
Hy thats your answer
Follow me for your problem
Follow me for your problem
Attachments:
Blade23:
can you please send a better quality picture
Answered by
178
Answer :
Given that, cosθ + sinθ = 1
⇒ (cosθ + sinθ)² = 1²
⇒ cos²θ + sin²θ + 2 sinθ cosθ = 1
⇒ 1 + 2 sinθ cosθ = 1
⇒ 2 sinθ cosθ = 0
⇒ sinθ cosθ = 0
Now, (cosθ - sinθ)²
= (cosθ + sinθ)² - 4 sinθ cosθ
= 1² - (4 × 0)
= 1 - 0
= 1
⇒ (cosθ - sinθ)² = 1
⇒ cosθ - sinθ = +_ 1
Hence, proved.
#MarkAsBrainliest
Given that, cosθ + sinθ = 1
⇒ (cosθ + sinθ)² = 1²
⇒ cos²θ + sin²θ + 2 sinθ cosθ = 1
⇒ 1 + 2 sinθ cosθ = 1
⇒ 2 sinθ cosθ = 0
⇒ sinθ cosθ = 0
Now, (cosθ - sinθ)²
= (cosθ + sinθ)² - 4 sinθ cosθ
= 1² - (4 × 0)
= 1 - 0
= 1
⇒ (cosθ - sinθ)² = 1
⇒ cosθ - sinθ = +_ 1
Hence, proved.
#MarkAsBrainliest
Similar questions