if cos theta + sin theta =1 then prove that cos theta-sin Theta= + - 1 please solve this
Answers
Answered by
11
cosß+sinß=1
or, (cosß+sinß)^2 = 1
or, cosß^2+sinß^2 + 2cosßsinß= 1
or, cosßsinß=0
Then, (Cosß - sinß)^2 = cosß^2+sinß^2 - 2cosßsinß
= 1 - 0
= 1
Cosß - sinß = +-1 (proved)
or, (cosß+sinß)^2 = 1
or, cosß^2+sinß^2 + 2cosßsinß= 1
or, cosßsinß=0
Then, (Cosß - sinß)^2 = cosß^2+sinß^2 - 2cosßsinß
= 1 - 0
= 1
Cosß - sinß = +-1 (proved)
Answered by
0
Answer :
Given that, cosθ + sinθ = 1
⇒ (cosθ + sinθ)² = 1²
⇒ cos²θ + sin²θ + 2 sinθ cosθ = 1
⇒ 1 + 2 sinθ cosθ = 1
⇒ 2 sinθ cosθ = 0
⇒ sinθ cosθ = 0
Now, (cosθ - sinθ)²
= (cosθ + sinθ)² - 4 sinθ cosθ
= 1² - (4 × 0)
= 1 - 0
= 1
⇒ (cosθ - sinθ)² = 1
⇒ cosθ - sinθ = +_ 1
Hence, proved.
#MarkAsBrainliest
Similar questions