if cos theta + sin theta = 1, then prove that cos theta - sin theta = +- 1
Answers
Answered by
2
cos theta + sin theta = 1 --------(1)
(a + b)^2 + (a - b)^2 = a^2 + b^2 + 2ab + a^2 + b^2 - 2ab
(a+b)^2 + (a-b)^2 = 2a^2 + 2b^2
=> (a+b)^2 + (a-b)^2 = 2 ( a^2 + b^2)
Similarly,
( sin theta + cos theta)^2 + (cos theta - sin theta)^2 = 2 ( sin^2 theta + cos^2 theta)
=> ( 1)^2 + (cos theta - sin theta)^2 = 2 ( 1) [ using equation 1]
=> 1 + ( cos theta - sin theta)^2 = 2
=> ( cos theta - sin theta)^2 = 1
=> cos theta - sin theta = + - 1
Hence Proved...
(a + b)^2 + (a - b)^2 = a^2 + b^2 + 2ab + a^2 + b^2 - 2ab
(a+b)^2 + (a-b)^2 = 2a^2 + 2b^2
=> (a+b)^2 + (a-b)^2 = 2 ( a^2 + b^2)
Similarly,
( sin theta + cos theta)^2 + (cos theta - sin theta)^2 = 2 ( sin^2 theta + cos^2 theta)
=> ( 1)^2 + (cos theta - sin theta)^2 = 2 ( 1) [ using equation 1]
=> 1 + ( cos theta - sin theta)^2 = 2
=> ( cos theta - sin theta)^2 = 1
=> cos theta - sin theta = + - 1
Hence Proved...
Similar questions