Math, asked by Ddsahil259, 9 months ago

If cos theta+ Sin theta = √2 cos theta , Show that Cos theta - Sin theta = √2sin theta.​

Answers

Answered by MystícPhoeníx
17

Solution:-

It is given that

Cosθ + Sinθ = √2 Cosθ

Squaring both side we get

→ (Cosθ + Sinθ)² = 2 Cos²θ

→ Cos²θ + Sin²θ + 2 Cosθ Sinθ = 2 Cos²θ

→ Cos²θ - 2 Cosθ Sinθ = Sin²θ

→Cos² θ - 2Cosθ Sinθ + Sin²θ = 2Sin²θ

→( Cosθ - Sinθ)² = 2Sin²θ

→ Cosθ - Sinθ = √2 Sinθ

Additional Information !!

Trigonometry Ratios

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

Similar questions
Math, 1 year ago