If cos theta+ Sin theta = √2 cos theta , Show that Cos theta - Sin theta = √2sin theta.
Answers
Answered by
17
Solution:-
It is given that
Cosθ + Sinθ = √2 Cosθ
Squaring both side we get
→ (Cosθ + Sinθ)² = 2 Cos²θ
→ Cos²θ + Sin²θ + 2 Cosθ Sinθ = 2 Cos²θ
→ Cos²θ - 2 Cosθ Sinθ = Sin²θ
→Cos² θ - 2Cosθ Sinθ + Sin²θ = 2Sin²θ
→( Cosθ - Sinθ)² = 2Sin²θ
→ Cosθ - Sinθ = √2 Sinθ
Additional Information !!
Trigonometry Ratios
Similar questions